
W H I T E PA P E R – A P R I L 2 0 1 9

How to Think Cloud Native
Bite-size thought pieces on the definition and
development of cloud native capabilities

W H I T E PA P E R | 2

How to Think Cloud Native

Table of contents

Definitions 3

In practice 3

DevOps 4

Containers and clusters 5

Microservices 6

Security 7

Container image security . 7

Microservice and network security . 8

W H I T E PA P E R | 3

How to Think Cloud Native

Definitions
There is no hard and fast definition for what cloud native means. In fact, there are other
overlapping terms and ideologies. At its root, cloud native is structuring teams, culture,
and technology to utilize automation and architectures to manage complexity and unlock
velocity. Operating in this mode is as much a way to scale the people side of the equation
as it is to scale the infrastructure side.

One important note: You don’t have to run in the cloud to be cloud native. These
techniques can be applied incrementally as appropriate and should help smooth any
transition to the cloud.

The real value from cloud native goes far beyond the basket of technologies that are
closely associated with it. To really understand where our industry is going, we need to
examine where and how we can make companies, teams, and people more successful.

At this point, these techniques have been proven at technology-centric, forward-looking
companies that have dedicated large amounts of resources to the effort. Think Google,
Netflix, or Facebook. Smaller, more flexible companies are also realizing value here.
However, there are very few examples of this philosophy being applied outside of
technology early adopters. We are still at the beginning of this journey when viewed
across the wider IT world.

With some of the early experiences being proven out and shared, the following themes
are emerging:

• More efficient and happier teams – Cloud native tooling allows big problems to be
broken down into smaller pieces for more focused and nimble teams.

• Reduced drudgery – This is accomplished by automating much of the manual work
that causes operations pain and downtime. This takes the form of self-healing and
self-managing infrastructure. Expect systems to do more.

• More reliable infrastructure and applications – Building automation to handle expected
churn often results in better failure modes for unexpected events and failures. For
example, if a single command or button click deploys an application for development,
testing, or production, it can be much easier to automate deployment in a disaster
recovery scenario (either automatically or manually).

• Auditable, visible, and debuggable – Complex applications can be opaque. The tools
used for cloud native applications, by necessity, usually provide much more insight into
what is happening within an application.

• Deep security – Many IT systems today have a hard outer shell and a soft gooey center.
Modern systems should be secure and least trust by default. Cloud native enables
application developers to play an active role in creating securable applications.

• More efficient usage of resources – Automated, cloud-like ways of deploying and
managing applications and services open up opportunities to apply algorithmic
automation. For instance, a cluster orchestrator can automate placement of workloads
on machines instead of having an ops team manage the placement in a spreadsheet.

In practice
Like any area with active innovation, there is quite a bit of churn in the cloud native world.
It isn’t always clear how best to apply the ideas laid out in the previous part. In addition,
any project of significance will be too important and too large for a from-scratch rewrite.
Instead, I encourage you to experiment with these new structures for newer projects or
for new parts of an existing project. As older parts of the system are improved, take the
time to apply new techniques and learnings as appropriate. Look for ways to break out
new features or systems as microservices.

 “Cloud native is structuring
teams, culture, and technology
to utilize automation and
architectures to manage
complexity and unlock velocity.”

JOE BEDA
PRINCIPAL ENGINEER
VMWARE

W H I T E PA P E R | 4

How to Think Cloud Native

 “What defines an SRE is
what happens at 10 AM the
next morning.”

JOE BEDA
PRINCIPAL ENGINEER
VMWARE

There are no hard and fast rules. Every organization is different, and software development
practices must be scaled to the team and project at hand. The map is not the territory.
Some projects are amenable to experimentation, while others are critical enough that they
should be approached much more carefully. There are also situations in the middle where
the techniques that were proven out need to be formalized and tested at scale before
being applied to critical systems.

Cloud native is defined by better tooling and systems. Without this tooling, each new
service in production will have a high operational cost. It is a separate thing that has to be
monitored, tracked, provisioned, and so on. That overhead is one of the main reasons why
sizing of microservices should be done in an appropriate way. The benefits in development
velocity must be weighed against the costs of running more things in production. Similarly,
introducing new technologies and languages, while exciting, comes with costs and risks
that must be weighed carefully.

Automation is the key to reducing the operational costs associated with building and
running new services. Systems such as Kubernetes, containers, continuous integration
and continuous delivery (CI/CD), and monitoring all have the same overarching goal of
making application development and operations teams more efficient so they can move
faster and build more reliable products.

The newest generation of tools and systems are better set up to deliver on the promise
of cloud native compared to older traditional configuration management tools because
the new tools help break the problem down so that it can easily be spread across teams.
Newer tools generally empower individual development and ops teams to retain
ownership and be more productive through self-service IT.

DevOps
It is probably most useful to think of DevOps as a cultural shift whereby developers must
care about how their applications are run in a production environment. In addition, the
operations folks are aware and empowered to know how the application works so that
they can actively play a part in making the application more reliable. Building an
understanding and empathy between these teams is key.

But this can go further. If we reexamine the way that applications are built and how the
operations team is structured, we can improve and deepen this relationship. Google does
not employ traditional operations teams. Instead, Google defines a new type of engineer
called the site reliability engineer (SRE). These are highly trained engineers (that are
compensated at the same level as other engineers) who not only carry a pager but are
expected and empowered to play a critical role in pushing applications to be more reliable
through automation.

When the pager goes off at 2 AM, anyone answering it does the exact same thing—try to
figure out what is going on so that they can go back to bed. What defines an SRE is what
happens at 10 AM the next morning. Do the operations people just complain, or do they
work with the development team to ensure that a page like that will never happen again?
The SRE and development teams have incentives aligned around making the product as
reliable as possible. That, combined with blameless postmortems, can lead to healthy
projects that don’t collect technical debt.

SREs are some of the most highly valued people at Google. In fact, products often launch
without SREs with the expectation that the development team will run their product in
production. The process of bringing on SREs often involves the development team proving
to the SRE team that the product is ready. It is expected that the development team will
have done all of the leg work, including setting up monitoring and alerting, alert play
books, and release processes. The dev team should be able to show that pages are at a
minimum and that most problems have been automated.

W H I T E PA P E R | 5

How to Think Cloud Native

As the role of the operations team becomes much more involved and application specific,
it doesn’t make as much sense for a single team to own the entire operations stack. This
stance leads to the idea of Operations Specialization. In some ways, it is a type of anti-
DevOps. Let’s take it from the bottom up:

• Hardware Ops – This is already clearly separable. In fact, it is easy to see cloud
infrastructure as a service (IaaS) as hardware ops as a service.

• OS Ops – Someone has to make sure the machines boot and that there is a good kernel.
Breaking this out from application dependency management mirrors the trend of
minimal OS distributions focused on hosting containers (such as Project Photon OS™,
CoreOS, Red Hat Project Atomic, Ubuntu Snappy, RancherOS, and Google Container-
Optimized OS).

• Cluster Ops – In a containerized world, a compute cluster becomes a logical
infrastructure platform. The cluster system (Kubernetes) provides a set of primitives
that enable many of the traditional operations tasks to be self-service.

• App Ops – Each application now can have a dedicated apps team as appropriate.
As above, the dev team can and should play this role as necessary. This ops team is
expected to go deeper on the application as they don’t have to be experts in the
other layers. For example, at Google, the AdWords front-end SRE team will talk to the
AdWords front-end development team a lot more than they’ll talk to the cluster SRE
(the Borg SRE) team. This alignment of incentives can lead to better outcomes.

There is probably room for other specialized SRE teams depending on the needs of the
organization. For instance, storage services may be broken out as a separate service with
dedicated SREs. Or there may be a team responsible for building and validating the base
container image that all teams should use as a matter of policy.

Containers and clusters
There is quite a bit of excitement around containers. It is helpful to try to get to the root of
why containers are exciting to so many folks. In my mind, there are three different reasons
for this excitement:

1. Packaging and portability

2. Efficiency

3. Security

Let’s look at each of these.

First, containers provide a packaging mechanism. This allows the building of a system to
be separated from the deployment of those systems. In addition, the artifacts/images that
are built are much more portable across environments (dev, test, staging, prod) than more
traditional approaches, such as virtual machine (VM) images. Finally, deployments become
more atomic. Traditional configuration management systems (Puppet, Chef, Salt, Ansible)
can easily leave systems in a half-configured state that is hard to debug. It is also easy to
have an unintended version skew across machines without realizing it.

Second, containers can be lighter weight than full systems, leading to increased resource
utilization. This was the main driver when Google introduced cgroups—one of the core
kernel technologies underlying containers. By sharing a kernel and allowing for much
more fluid overcommit, containers can make it easier to maximize the use of compute
resources. Over time, expect to see much more sophisticated ways to balance the needs
of containers co-habitating a single host without noisy neighbor issues.

Finally, many users view containers as a security boundary. While containers can be
more secure than simple Unix processes, care should be taken before viewing them
as a hard security boundary. The security assurances provided by Linux namespaces
may be appropriate for soft multitenancy (where the workloads are semi-trusted) but
not appropriate for hard multitenancy (where workloads are actively antagonistic).

W H I T E PA P E R | 6

How to Think Cloud Native

There is ongoing work in multiple quarters to blur the lines between containers and VMs.
Early research into systems such as unikernels is interesting but won’t be ready for wide
production for years.

While containers provide an easy way to achieve the goals above, they aren’t absolutely
necessary. Netflix, for instance, has traditionally run a very modern stack by packaging
and using VM images similar to how others use containers.

While most of the original push around containers centered on managing the software
on a single node in a more reliable and predictable way, the next step of this evolution
is around clusters (also often known as orchestrators). Taking a number of nodes and
binding them together with automated systems creates a new self-service set of logical
infrastructure for development and operations teams.

With a container cluster, we make computers take over the job of figuring out what
workload should go on which machine. Clusters also silently fix things up when hardware
fails in the middle of the night instead of paging someone.

The first thing that clusters do is enable the operations specialization (as described above)
that allows application ops to thrive as a separate discipline. By having a well-defined
cluster interface, application teams can concentrate on solving the problems that are
immediate to the application itself.

The second benefit of clusters is that it makes it possible to launch and manage more
services. This allows new architectures (via microservices described in the next installment
of this series) that can unlock velocity for development teams.

Microservices
Microservices are a new name for a concept that has been around for a very long time.
Basically, it is a way to break up a large application into smaller pieces so that they can be
developed and managed independently. Let’s look at some of the key aspects here:

• Strong and clear interfaces – Tight coupling between services must be avoided.
Documented and versioned interfaces help to solidify that contract and retain a certain
degree of freedom for both the consumers and producers of these services.

• Independently deployed and managed – It should be possible for a single microservice
to be updated without synchronizing with all of the other services. It is also desirable to
be able to roll back a version of a microservice easily. This means the binaries that are
deployed must be forward and backward compatible both in terms of API and any data
schemas. This can test the cooperation and communication mechanisms between the
appropriate ops and dev teams.

• Built-in resilience – Microservices should be built and tested to be independently
resilient. Code that consumes a service should strive to continue working and do
something reasonable in the event that the consumed service is down or misbehaving.
Similarly, any service that is offered should have some defenses with respect to
unanticipated load and bad input.

Sizing of microservices can be a tricky thing to get right. I’d say to avoid services that
are too small (pico-services) and instead aim to split services across natural boundaries
(languages, async queues, scaling requirements) and to keep team sizes reasonable
(i.e., two pizza teams).

Instead of starting with 20 services, start with two to three services and split them as
complexity in that area grows. Oftentimes, the architecture of an application isn’t well
understood until the application is well under development. This also acknowledges
that applications are rarely finished but rather always a work in progress.

 “Clusters help eliminate
ops drudgery.”

JOE BEDA
PRINCIPAL ENGINEER
VMWARE

 “The application architecture
should be allowed to grow in
a practical and organic way.”

JOE BEDA
PRINCIPAL ENGINEER
VMWARE

W H I T E PA P E R | 7

How to Think Cloud Native

 “Once a vulnerable image is
found, this changes things from
being a technical issue to a
process or workflow issue.”

JOE BEDA
PRINCIPAL ENGINEER
VMWARE

MICRO-SEGMENTATION
FOR CONTAINERS

Micro-segmentation uses network
virtualization to divide a data center
and its workloads into logical segments,
each of which contain a single workload.
You can then apply security controls to
each segment, restricting an attacker’s
ability to move to another segment
or workload.

Are microservices a new concept? Not really. This is really another type of software
componentization. We’ve always split code up into libraries. This is just moving the linker
from being a build-time concept to a run-time concept. This is also very similar to the SOA
push from several years ago but without all of the XML. Viewed from another angle, the
database has almost always been a microservice in that it is often implemented and
deployed in a way that satisfies the points above.

Constraints can lead to productivity. While it is tempting to allow each team to pick a
different language or framework for each microservice, consider instead standardizing on
a few languages and frameworks. Doing so will improve knowledge transfer and mobility
within the organization. However, be open to making exceptions to policy as necessary.
This is a key advantage of this world over a more vertically integrated and structured
platform as a service (PaaS). In other words, constraints should be a matter of policy
rather than capability.

While most view microservices as an implementation technique for a large application,
there are other types of services that form the services spectrum:

1 . Service as implementation detail – As described above, this is useful for breaking down
a large application team into smaller teams that stretch from development to operations.

2 . Shared artifact, private instance – In this scenario, the development process is shared
across many instances of the service. There may be one dev team and many ops teams,
or perhaps a unified ops team that works across dedicated instances. Many databases
fall into this category where many teams are running private instances of a single
MySQL binary.

3 . Shared instance – In this case, a single team provides a shared service to many
applications and teams inside of an organization. The service may partition data and
actions per user (multitenant) or provide a single, simple service that is widely used
(serving HTML UI for a common branding bar, serving up machine learning models, etc.).

4 . Big-S service – Most enterprises won’t produce a service like this but may consume
them. This is the typical hard multitenant service that is built to service a large number
of disparate customers. This type of service requires a level of accounting and
hardening that isn’t often necessary inside an enterprise. Something like SendGrid
or Twilio would fall into this category.

As services shift from being an implementation detail to a common infrastructure offered
within an enterprise, the service network morphs from being a per-application concept to
something that can span the entire company. There is an opportunity and a danger in
allowing these types of dependencies.

Security
Security is still a big question in the cloud native world. Old techniques don’t apply cleanly
and so, initially, cloud native may appear to be a step backward. But this brave new world
also introduces opportunities.

Container image security
There are quite a few tools that help users to audit their container images to ensure they
are fully patched. I don’t have a strong opinion on the various options there.

The real problem: What do you do once you find a vulnerable container image? This is a
place where the market hasn’t provided a great set of solutions. You will want to identify
which groups within your organization are impacted, where in your container image tree
to fix the problem, and how best to test and push out a new patched version.

CI/CD is a critical piece of the puzzle because it will enable automated and quick release
processes for the new images. Furthermore, integration with orchestration systems will

W H I T E PA P E R | 8

How to Think Cloud Native

enable you to identify which users are using which vulnerable images. It will also allow you
to verify that a new fixed version is actually being run in production. Finally, policy in your
deployment system can help prevent new containers from being launched with a known
bad image (in the Kubernetes world, this policy is called admission).

Microservice and network security
But even if all of the things you run on your cluster are patched, it doesn’t ensure that
all activity on your network is trusted.

Traditional network-based security tools don’t work well in a dynamically scheduled
short-lived container world. Short-lived containers may not be around long enough
to be scanned by traditional scanning tools. And by the time a report is generated,
the container in question may be gone.

With dynamic orchestrators, IP addresses don’t have long-term meaning and can
be reused automatically. The solution is to integrate network analysis tools with the
orchestrator so that logical names (and other metadata) can be used in addition to
raw IP addresses. This will likely make alerts more easily actionable.

Many of the networking technologies leverage encapsulation to implement an IP address
per container. This can create issues for network tracing and inspection tools. They will
have to be adapted if such networking systems are deployed in production. Luckily, much
of this has standardized on VXLANs and VLANS, or there’s no encapsulation, so support
can be leveraged across many such systems.

However, in my opinion, the biggest issues are around microservices. When there are
many services running in production, it is necessary to ensure that only authorized clients
are calling any particular service. Furthermore, with reuse of IP addresses, clients need
to know they are speaking with the correct service. There are two (non-mutually exclusive)
ways to approach this problem.

In the first approach, the more flexible networking systems have the opportunity to
implement host-level firewall rules (outside any container) to enable fine-grained access
policies for containers to call other containers. I’ve been calling this approach network
micro-segmentation. The challenge here is configuring such policy in the face of dynamic
scheduling. While early yet, there are multiple companies working to make this easier
through support in the network, coordination with the orchestrator, and higher level
application definitions. One big caveat: Micro-segmentation becomes less effective
the more widely any specific service is used. If a service has hundreds of callers, simple
access-implies-authorization models are no longer effective.

The second approach is for applications to play a larger role in implementing authentication
and encryption inside the data center. This works as services take on many clients and
become soft multitenants inside a large organization. This requires a system of identity
for production services. As a side project, I’ve started a project called SPIFFE (Secure
Production Identity Framework For Everyone). These ideas are proven inside of companies
such as Google.

Security is a deep topic, and I’m sure there are threats and considerations not listed here.
This will have to be an ongoing discussion.

There’s a start on how to think cloud native. If you are keen to continue the discussion,
please reach out to us.

LEARN MORE ABOUT CLOUD NATIVE
TECHNOLOGY FROM VMWARE

To find out more about how VMware
can help you build, run, and manage
cloud native applications, see
https://cloud.vmware.com/

AUTHOR BIO

Joe Beda is a principal engineer at
VMware. He was the co-founder and
CTO of Heptio. Previously, at Google,
Joe co-created Google Compute Engine
and filed the first-ever Kubernetes
project commit. He is a staunch
advocate for open-source software and
a frequent contributor to the community.

https://cloud.vmware.com/

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www .vmware .com Copyright © 2019 VMware, Inc.
All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other
marks and names mentioned herein may be trademarks of their respective companies. Item No: 217250aq-vmw-wp-cloud-native-uslet 4/19

	Definitions
	In practice
	DevOps
	Containers and clusters
	Microservices
	Security
	Container image security
	Microservice and network security

